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Rezumat. In domeniul Ingineriei Civile structurile de rezistentă metalice au o deosebită importanţă în reducerea greutăţii construcţiei cu deosebire în cazul construcţiilor înalte, a podurilor şi a construcţiilor cu scop industrial. Pentru a putea micşora cât mai mult greutatea structurilor metalice acestea sunt proiectate în domeniul elasto-plastic ceea ce face ca instabilităţile locale şi cele globale să devină de o importanţă covârşitoare. De mare actualitate în prezent, dar cu precădere pentru structurile viitoare, tehnologia de sudură prin marea sa flxibilitate constituie una dintre o        (Maximum 5 rânduri)
Cuvinte cheie: greutatea structurilor metalice acestea sunt proiectate. (Maximum 1 rând)
Abstract. In Civil Engineering Design, the steel’s structures had a great importance on the light structures realized used to tall buildings, bridges piles and girders. To realize a smallest loading by the own weigh of the structures components there design is made in elastic-plastic state and the global and local instability become more important. The actual trends in the building design consist in using the flexibility of the welding joints technology in almost all the steel’s buildings structures and these work try to give a way for establish an correlation between welding technology and di         (Maximum 5 rânduri)
Keywords: building, design, flexibility, structures components (Maximum 1 rând)
1. Introduction

The estimation of buckling load and deflection in engineering was made the first time by Euler by using the equilibrium between the internal and external moment and the general differential ordinary equation that had his name. The approximation based on Euler equation represent an ideal buckling behavior and in practice the influence of the yield stress, cross section and residual stresses play a crucial role and generally they influence a reduction factor value [4],[6],[7]. The 
The real ultimate stress is lower that Euler buckling stress and the equation (1) was get without consider the shape and dimensions of the section and the way of construction.
The estimation of buckling load and deflection in engineering was made the first time by Euler by using the equilibrium between the internal and external moment and the general differential ordinary equation that had his name. The approximation based on Euler equation represent an ideal buckling behavior and in practice the influence of the yield stress, cross section and residual stresses play a crucial role and generally they influence a reduction factor value [4],[6],[7]. The 
The real ultimate stress is lower that Euler buckling stress and the equation (1) was get without consider the shape and dimensions of the section and the way of construction. 

 reduction factor () is determinate based of the relative slenderness (). 
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where E is the elasticity modulus; 
[image: image2.wmf]l=

×

p×

s×

fl

rel

C

L

EI

A

 –
the relative slenderness; Lfl – the buckling length; C – the yield stress; I – the inertia momentum; A – section area 
The real ultimate stress is lower that Euler buckling stress and the equation (1) was get without consider the shape and dimensions of the section and the way of construction. 
The estimation of buckling load and deflection in engineering was made the first time by Euler by using the equilibrium between the internal and external moment and the general differential ordinary equation that had his name. The approximation cross section and residual stresses play a crucial role and generally they influence a reduction factor value [6],[4],[7]. The 
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	a) Reduction factor function of slenderness
	b) Sectional shapes and yield material diagram for reduction factor function of slenderness

	Fig. 1. Reduction factor/slenderness diagrams for ultimate load establishing.



The real ultimate stress is lower that Euler buckling stress and the equation (1) was get without consider the shape and dimensions of the section and the way of construction. 

Based on buckling analysis get by well known Euler equation, the practical experiences made for different sectional shapes groups and different steels propriety four slenderness graphics results and are used in all the standards in Civil Engineering. (Figure 1a). The ultimate load is compute with the relation:
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An eccentric moment to change the location of the load and the load is located in the centre of gravity of new effective section.

2. Analytical model for residual stresses consideration

General considerations:

· The load is not in the geometrical center of the section and has variation function of initial deflection and compressed load value.

· The maximum loads are in the middle section of the girder and are applied over the whole girder.

· For low value loads the material are in elastic state in all the section and the classical relations can be used.

· When the loads increases and a part of the section starts to yield the deflection increase nonlinear and we must get a new approximation for the phenomenon must be made.

· The compression stress in the area that becomes plastic will not increase over the compression yield stress.
· The parts of section where the stress are little that compression yields will be considered reduced cross-section or effective cross-section.

· The effective cross-section is asymmetric and the gravity center shift with every load value.

· Do to consideration that the stress at mid-section is extended over whole girder, the gravity center change the position in all the sections.

· For calculation, the force is located in the gravity centre and the shift of gravity center is approximate using an added bending moment. That bending moment generate an extra deflection and the shift against the gravity center of the section.

· The initial deflection is considerate.

If the partial yielding load on the structure is called F1 then the total deflection of the middle section of a beam column will be:
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where: 
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 is the Euler buckling load; d1 – the total deflection at force F1; d0 – 
the initial deflection (when F = 0 N); F1 – 
the partial yielding load.

Because the sine shapes of the deflection, the most critical cross-section is the middle section of the beam and the stress shape in that section is considerate to be the seam in all the beam cross sections. In reality the ends zone of the beam start to yield at larger loads that the middle zone of the beam. That assumption is made for mathematical modeling simplification. Schematical​​ly, the iterative modification of the loads and stress in the middle section of the beam used in mathematical method is presented in Figure 2.

The current analyze load case “i” dates are the loads of the previous load case and the deflection calculated in this previous load case, “i – 1”. The original deflection, d0 appear in the first load case i = 1. The residual stress is considerate using the simplified shape repartition, given in Figure 3.

	
	
	

	The beam deflection model consideration
	Beam load and eccentricity
	Notations
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Force in the gravity sectional point
	F(i) = F(tot)-F(i-1)

F(i) – the extra load of the compressed bead

d(tot,i) – the total  deflection at F(i-1)
d(n,i) – the deflection due eccentric force

d(i) – the deflection due to F1
z(i) – the shift between the effective section gravity point and original gravity section point
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 Stiffness dn of point application
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Loading force system for deflection calculation
	


Fig. 2. The computing scheme of the deflection of compressed beam.

	Residual stress shape
	Considered sections evolution under loads
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 Reduced residual stress diagram
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Profile without reductions (I1,A1)
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Profile with reduction on left flange (I2,A2)


Fig. 3. Simplified residual stress shape repartition.
	Residual stress shape
	Considered sections evolution under loads
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 Profile with reduction on web and flanges (I3,A3)
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 Profile with reduction on web and flange (I4, A4)


Fig. 3 (continued).
Analysis model. The equilibrium between the internal and external bending moments represents the condition of mathematical expression of ultimate load and deflection.

The external load bending moments are the loads multiplied by the deflection. The internal moment is the curvature multiplies by stiffness and the curvature re​presents the second derivative of the deflection. Solving this condition an iterative expression for current de​flection, d(tot,i), is the form:
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(5.1..5.4)

where: dtot,i  
is the total deflection at load case i [mm]; dtot,i-1 – the total deflection at load Fi-1 [mm]; dm,i – the deflection due to bending moment in load case i [mm]; di – 
the extra deflection due to the difference in normal force [mm]; Fi – 
the value of load in case i [N]; Fi-1 – the load in the in the case i-1 (N); Ii – the moment of inertia in case i [mm4]; Ai – the area of section in the case i [mm2]; FE,i – the Euler buckling load in case i [N]; hi – the difference between the original gravity point and the effective point of gravity in case i.

The initial hypotheses of the analysis are:

· There is an initial deflection;

· There is a force in the section that generate partial yielding;

· An deflection due to original load exist;

· There is an additional force;

· There is a difference between the original centre of gravity and the effective point of gravity;

3. Technological influence 
on residual stress shape

The double T beams are made by rolling or welding processes and specifically residual stress values and distributions are obtained. In the case of rolling process the residual simplified stress distribution consideration is based on bpl = B/2, hpl = H/4 and the value of residual stress is equal with 30% of yield stress. 

For joining [1-3] by welding beam realize the process was studied using diverse technology variant. Function of welding technology, the bpl, hpl, Apl and stress shape become different. The technological analyzed calculus variant is given in figure 4.

The technological analyzed variants are given in the Table 1.

Physical material properties are presented in table 2.

Correction with the number of layers and mode of la​yers deposits was made helped by the statistical relations:

● Symmetric welded deposit
Asymmetric weld deposit:
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Fig. 4. The schematics area plasticity establishing.
Table 1

The technological analyzed variants

	Asymmetrical welds variants

	V1
	V2
	V3
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	Symmetrical welding variants

	V1
	V2
	V3
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Table 2

Physical properties of considerated steels

	Symbol
	Name
	Low alloyed steel
	Mesure unit used

	
	Thermal conductibility
	0,025
	W/(mm·oC) 

	a
	Thermal difuzibility
	5,0
	mm2/s

	ρ·c
	
	0,005
	J/(mm3·oC) 

	Tt
	Fusion temperature
	1520
	oC

	Hm – H0
	Solid phase enthalpy
	7,5
	J/mm3

	Hm
	Melting heat
	2,0
	J/mm3


● Establishing the residual stress for welded variants
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where: 
Ele is the linear energy of welding; tw – dimens. of web plate; tb – dimens. of flage plate; AplA – plastical area corrected; A – sectional area; z – joined parts (assemble) weight center position; zS – distance between welded area weight center point and the assemble section weight center; c – strains of the yield stress;  – material coefficient;  – thermical volumical contraction; c – speciffical haet of material;  – material density; kc – correction coefficient

The plastically area is evaluate in this paper with the formule:
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where: Apl is the the matherials area inclosed in inside the isotherma T=550 oC for the bass matherial; m55r – the width of the isotherma T = 550 oC calculate for ruth layers; m55t – the width of the isothermals T = 550 oC calculate for the deposits layers; nt – the number of layers; ka – the correction coefficient function of welding technology.

For the welded girders double T welded in the best conditions of assembly with all the parts clamped and using the same technology for the flanges and web welding, the methods for stress diagram estimation is based on the equations:
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In the considered case:
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And final expression for the welding process becomes:
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Welding process was Gas Active Metal Arc Welding (GAMAW) with short arc variant and electrode wire diameter 1.2 mm. The geometrical parameters established were given in table 3.

The isothermals geometrical characteristics and uncorrected plastically area resulted are give in Table 5.
The compression stress results in the middle section of the double T girder are presented in Table 7. 

Table 3

Technological characteristics of layer

	Geometrical parameters
	Root Area, 
Ar [mm2]
	Filled layers area,

At [mm2]
	Number of layer, 
n
	Welding area,

As [mm2]

	Variant 1
	18
	30
	r+2t
	78

	Variant 2
	25
	45
	r+t
	70

	Variant 3
	18
	20
	r+3t
	78


Table 4

The welding principal’s parameters for considerate technology

	
	Is
[A]
	Ua
[V]
	Ve
[cm/min]
	Vs
[cm/min]
	El
[kJ/cm]
	cr
[mm]

	
	
	
	
	r
	t
	r
	t
	

	Variant 1
	
	
	
	12,323
	7,394
	8,028
	13,38
	17,5

	Variant 2
	118
	14
	196,33
	8,873
	4,929
	11,5
	20,69
	22,54

	Variant 3
	
	
	
	12,323
	11,091
	8,028
	8,92
	18,43


Table 5

The isothermal characteristics considerate for one joint

	Isothermal principal caracteristics
	Ap
[mm2]

	
	Tt = 1520 oC
	TAC3 = 910 oC
	Tpl = 550 oC
	

	
	bm
[mm]
	Am
[mm2]
	bm91
[mm]
	Am91
[mm2]
	bm55
[mm]
	Am55
[mm2]
	

	V1
	r
	3,295
	17,06
	4,691
	34,56
	6,5
	66,516
	247,696

	
	t
	4,096
	26,35
	5,746
	51.853
	7,594
	90,64
	

	V2
	r
	4,57
	32,907
	6,515
	66.7
	9,038
	128,31
	368,966

	
	t
	6,543
	67,64
	9,093
	129,9
	12,378
	240,656
	

	V3
	r
	3,295
	17,06
	4,691
	34,56
	6,5
	66,516
	276,93

	
	t
	4,603
	33,279
	4,824
	36,556
	6,682
	70,139
	


Table 6

The resulting parameters for plasticity area for flange-web welding

	
	AI = 2*AS  [mm2]
	Condition tw* [mm]
	km
	Kb1S
	Kb1A
	Apl55 [mm2]
	AplS [mm2]
	AplA [mm2]

	V1
	156
	80,19
	0,458
	0,498
	0,793
	495,392
	246,625
	392,646

	V2
	140
	95,983
	0,611
	0,655
	0,978
	737,932
	483,542
	770,425

	V3
	156
	65.8
	0,3737
	0,413
	0,598
	553,86
	228,828
	363,94


Table 7

The residual estimation stress and strains

	Technological versions
	Apl [mm2]
	bpl [mm]
	hpl  [mm]
	Ele [kJ/cm]
	ZA [daN/cm2]
	d0 [mm]

	Asymmetric
	V1
	392,646
	14,678
	7,339
	5,373
	-106,9
	L/1000

	
	V2
	770,425
	28,808
	16,4
	11,07
	-220,2
	L/1000

	
	V3
	363,94
	13,605
	6,803
	4,963
	-98,725
	L/1000

	Symmetric
	V1
	246,625
	9,22
	4,61
	3,314
	-65,954
	L/1000

	
	V2
	483,542
	18,08
	9,04
	6,694
	-133,193
	L/1000

	
	V3
	228,828
	8,55
	4,28
	3,069
	-61,061
	L/1000


4. Model results

The ultimate weld technology consist in the estimation of plasticity area extended over all the section of flanges and web and give an extremely extended plastically area. In reality the correctionless coefficients with technological parameter give more extended deflections that were established in reality. These cases are used for most badly residual stress reduced diagram. The results in this case are done in the Table 8. 

The program for welded technology, accordingly with Figure 4 for Gas Active Arc Welding   for   de = = 1.2 mm diameter with welding parameters ac​cordingly with tables 2,6 and the buckling estimation of the girder column accordingly with Figure 2 and 3 was made in Visual C/C++. The diagrams for Critical Buckling Force and Column Length and the Buckling Curves for the all the welding technology considerate are give in the figure 5 and Figure 6 respectively for diverse column length [9]. We try to get good predictions for Columns length between 1 and 50 m and to verify the results using the diverse usual national and international design curves standards. The results were verified using the FEM method too for diverse Columns length and in von Mises [8], [5] isotropic plasticity model using the COSMOS software. For the case of a Column with 10 m length and in the hypothesis of 10 mm initial displacement the results are give in Table 10 figures.

Table 8

The technological variants and the corrected 
plasticity area (ec. 11)

	
	AI=2*AS
[mm2]
	Condition

tw* [mm]
	km
	Kb1S
	Kb1A
	Apl
[mm2]
	AplS
[mm2]
	AplA
[mm2]

	V1
	156
	80,19
	0,458
	0,498
	0,793
	945
	436,5
	749,39

	V2
	140
	95,983
	0,611
	0,655
	0,978
	1126,6
	739,92
	1101,48

	V3
	156
	65.8
	0,3737
	0,413
	0,598
	845,32
	364,33
	505,5


The compression values of stress and deflection, d0. 

	Technological variants 
	Apl [mm2]
	bpl [mm]
	hpl [mm]
	ZA [daN/cm2]

	Asymmetric
	V1
	392,646
	44,953
	27,339
	-306,9

	
	V2
	770,425
	54,95
	26,4
	-520,2

	
	V3
	363,94
	41,23
	26,803
	-287,725

	Symmetric
	V1
	392,646
	34,953
	17,339
	-236,3

	
	V2
	770,425
	44,95
	26,4
	-412,2

	
	V3
	363,94
	32,3
	23,803
	-248,23
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Fig. 5. Critical Buckling Force resulted for diverse length 
and welding technologies.


Fig. 6. The Buckling Curve Factor  function of the relative
 slenderness for diverse welding technologies.

Table 10

Results of a column with 10000 mm length for stress and sistortions. 
The analyse was made using symmetry loading and sectional geometry

	Time force analyse  modelling
	Time deformation variation
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Table 10 (continued)

	Time force analyse  modelling
	Time deformation variation
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5. Conclusions

· The own model, based on analytical modelling of Columns instability give a good approximations for critical loads and buckling curves for high length of double T articulated girder.

· The proposed model results, for all the area of length analyzed and for the residual welding stress estimation are in the area of viability conforming the European Codes of design for all the possible welding technologies. Even without the corrections estimations for plastically area induced by welding. 

· The reserves of critical loads in the case of the best welding technology become too large even if the residual deflection (d0) is L/1000 accordingly with the maxim accepted deflection in the design codes.

· The DIN, Dutch, Romanian and other national Design codes give highest critical loads that Euro codes and their value are in according with the residual stresses and deflections that are obtained in the case when the welding technology is used in accord with the national welding technological process standards.

· The welding residual stress and distortions estimations conduce to establish a technology that can decrease the weight of the structure. In the case of tall buildings, the method can give appreciable economy in steel and welding materials.

· The computing time in the case of proposed method is less that the FEM method and the program made in Microsoft Visual C/C++ get output for Tecplot postprocessor product. In this case the graphical possi​bilities of our program increase and the results can be easy integrated in the design processes of the structure.
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